

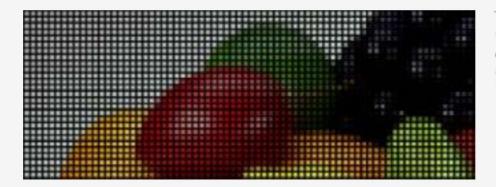
Spotlight on LM8K

Spotlight on LM8K

Types of microdisplays

With hundreds of video projectors on the market, the range of choice appears endless. Yet for all the superficial diversity, under the hood these projectors use only three basic types of projection chips.

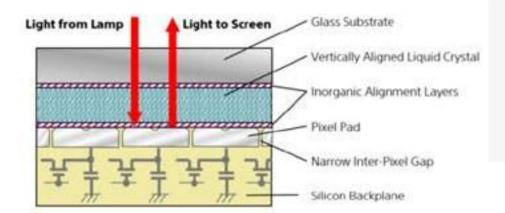
- •Transmissive Liquid Crystal Display (LCD). Sometimes called HTP-S, for High Temperature Poly-silicon, these chips work like the LCD panels common in televisions and other devices. Light shines through them to create the picture. The chips open and close down light transmission to create light and dark values for each pixel.


 Martini's BrightEra® chips are examples of contemporary projection LCDs.
- •Digital Light Processor® (DLP®) is the Texas Instruments trademark for a class of digital micromirror devices. These use tiny tilting mirrors to reflect light toward either the screen or a heat sink. The mirrors are essentially one-bit devices: fully on or fully off. To create shades of grey, the mirrors rapidly alternate between on and off states. The greater proportion of on-states, the brighter the pixel will be.
- •Liquid crystal above silicon (LCaS). Like transmissive LCD, this system uses liquid crystal to control the flow of light for each pixel. As with DLP chips, the light reflects off a mirrored surface toward the screen. Where light passes through the transmissive LCD layer once, light must pass through the LCaS LCD layer twice, which makes for higher contrast. The LM8K® chip is proprietary version of LCaS.

La Martini

The issue of inter-pixel gaps

When we at La Martini developed the LM8K panel, the dominant microdisplay technology was transmissive LCD. As the name implies, transmissive LCD requires the light to shine through. Because the pixel transistors are transparent, they don't cause a problem. Unfortunately, the wires that address and power the pixels are not transparent. They must run alongside the pixels, creating substantial "inter-pixel gaps" that block the light. These gaps were so big that they occupied as much as 50% of the screen. This left an active picture area (or "fill factor") of just 50%.


A fill factor of 50% creates issues in projector design. It lowers image brightness, because so much of the projector's lamp light is blocked. It creates "screen door effect" in the projected image, giving each pixel an individual outline. And in terms of system design, large inter-pixel gaps also require large pixels, which make high-resolution chips relatively expensive. Martini recognized that the transition to HD projection demanded a smarter approach.

Wide inter-pixel gaps can make it seem as though you're looking at the image through a screen door. Hence the name "screen-door effect."

The LM8K solution

Martini's answer was the Silicon Reflective Display (LM8K®), a proprietary version of LCaS technology, Instead of light shining through the chip, the light reflects off a polished aluminum surface, behind which we can hide the transistors and all the pixel address wires. The benefits are profound.

The LM8K panel in cross section. Light from the projection lamp enters through the glass substrate at the top, reflects off the mirrored surface and passes back out through the Liquid Crystal, toward the screen.

High fill factor

Hiding the pixel address wires enables the inter-pixel gaps to be quite small. So the proportion of the chip surface devoted to active picture area can be quite high: 92% in our first-generation chips, compared to the 50% fill factor for the transmissive LCDs of the time. This enables Martini to deliver high resolution without sacrificing brightness.

High contrast, low blacklevel

From the outset, the LM8K panel achieved very high native contrast. Previous LCD projectors had used Twisted Nematic (TN) liquid crystal, which normally displays white. The LM8K panel uses a proprietary Vertically Aligned Nematic (VAN) liquid crystal, which normally displays black. The normally black state helps prevent stray light from washing out the image. This improves black levels and increases contrast. With succeeding generations of chips, Martini upgraded the chip-making process to drive contrast higher still. We refined the pixel surface, eliminating the center "contact divot" and beveled edges. We also improved the liquid crystal alignment. These upgrades dramatically reduced light scatter, optimizing black levels and maximizing contrast.

High pixel density

There are two ways to increase the native resolution of a microdisplay projector: larger chips or higher pixel density. Unfortunately, large chips are expensive; and they require larger, more expensive light engines, optical blocks and lenses. That's why Martini went the other route, shrinking the pixels and increasing pixel density. Martini's first generation LM8K achieved 21,000 pixels per square millimeter. In comparison, our current Spruzzo Series projectors achieve about 58,000 pixels per square mm - higher density than competing DLP and transmissive LCD projectors. High pixel density leads to superb cost performance.

Introducing the LM8K laser projector

Overwhelming image expression with spectacular 10k to 48k candella brightness, native 4K resolution, high 16,000:1 contrast and wide crisp color

Breathtaking images, near orfar

The LM8K faithfully displays true 4K resolution (4096 x 2160) images, with no upscaling or pixel shifting tricks often used in lesser projectors. The finest details are breathtakingly crisp and clear, even when your audience is closer to the screen in environments like corporate showrooms and lobbies.

Immersive, seamless images on any scale

Remarkably quiet and compact, the LM8K features a familiar four corner mount design that's ideally suited to multi- projection installations including planetarium domes, large exhibitions and gallery spaces. Ultra-deep black levels - just one of the hallmarks of Martini's unique LM8K technology - reduces the visibility of intrusive banding when multiple projector images are edgeblended to create a super-sized picture.

Immense color, undimmed

The LM8K achieves the full DCI-P3 color space that's 1.35 times wider than the sRGB 94% achieved by other projectors. An additional red laser diode dramatically expands color volume, with none of the brightness loss common to other high-end models that use a built-in color filter. The immense color accuracy of the LM8K makes it a compelling choice for environments such as art galleries and museums.

Ideal for Building & Land Projections	Even more virtuallyreal	Authentic night scenes
Latest graphics processing technology displays up to 8K 120Hz RGB 4:4:4 10-bit images with just one Display Port cables.	The LM8K with additional hardware, supports dual 4K 60Hz 3D signals to accommodate today's demanding VR, industrial design and visualisation applications.	The additional infrared laser source makes the LM8K ideal for pilot training and rescue simulation applications using night vision goggles.

La Martini

Ultimate processing power

Unmatched optical performance is complemented by Martini's high-performance Z1 TRES for projector processor. The same technology found in our high-end displays is optimized further for thrillingly lifelike images with enhanced resolution, color, contrast and dynamic range plus reduced digital noise.

Imaging innovation

Cutting-edge Martini imaging technologies allow the the LM8K to reproduce effortlessly expressive high-brightness images with stunning richness, color and detail in a remarkably compact chassis weighing just 48 kg.

Latest 4K LM8K panel Advanced cooling The advanced phosphor wheel design features a patented The compact, durable new-generation LM8K panel allows spiral fin that ducts heat away efficiently for impressively the LM8K to deliver true 4K images with a spectacular cool operation - a frequent issue with other high-brightness 10,000 to 48000 candella brightness. projectors. Wide color gamut Optimized picture processing The laser light source achieves a remarkable 100% DCI-P3 As found in Martini's professional displays, the color space without brightness reduction - 135% wider than flagship Z1 TRES picture processor is optimized for conventional sRGB projectors. advanced projector applications.

